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Abstract. Even and odd phase coherent states associated with the Hermetian phase operator
theory are introduced in terms of the creation operation of the phase quanta defined in a finite-
dimensional phase state space. Some mathematical and physical properties of these quantum
states are studied in some detail. It is shown that the even phase coherent states together with
the odd ones build an overcomplete Hilbert space. Even and odd coherent-state formalism of
the Pegg–Barnett phase operator is given in terms of the projection operator in the even and
odd phase coherent-state space. The number–phase uncertainty relation is investigated for these
quantum states. It is shown that even and odd phase coherent states are not minimum uncertainty
and intelligent states for the number and phase operators.

It is well known that quantum phase [1] is an important concept in physics, especially
in quantum optics [2], which has been given a great deal of attention for a long time. In
quantum mechanics, any observable should be related to a Hermitian operator. The problem
of defining a Hermitian phase operator is an old one. Susskind and Glogower (SG) [3]
established the exponential phase operators. Since then the SG phase operators have applied
to a variety of problems in quantum optics [4]. In particular, Shapiro and Shepard [5]
proposed coherent and squeezed phase states which can be used to study quantum phase
measurements [6]. Unfortunately, the SG phase theory suffers from the fact that a Hermitian
phase operator can not be constructed since the energy spectrum of a harmonic oscillator is
restricted from below.

A very important development in this field has been made by Pegg and Barnett (PB) [7–
9]. They have defined a Hermitian phase operator in a finite-dimensional but arbitrarily large
Hilbert space. Since the natural description of the electromagnetic field means the use of
infinite-dimensional Hilbert space, one must take the infinite-dimensional limit at the end of
expectation-value calculations performed in the finite-dimensional space. Authors in [10–13]
have adopted the PB phase formalism to study properties of coherent states and a harmonic
oscillator in the finite-dimensional space. In our previous paper [14], we studied the even
and odd coherent state in the finite-dimensional number-state space. Making use of the
factorizable property of the PB Hermitian phase operator, in [15, 16] we have constructed
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phase coherent states and obtained the phase coherent-state formalism of the Hermitian
phase operator. In this paper, we intend to introduce even and odd phase coherent states
associated with the PB Hermitian phase theory and study some properties of these quantum
states.

Based on a finite-dimensional number-states space
∑

2s+1 = {|0〉, |1〉, . . . , |2s〉}, where
s is a positive integer, a Hermitian phase operator can be defined in terms of the projection
operator of the(2s+1)-dimensional phase-state space

∑
2s+1 = {|θ0〉, |θ1〉, . . . , |θ2s〉} in this

form:

8̂θ =
2s∑
m=0

θm|θm〉〈θm| (1)

where the phase eigenvalueθm = θo+ 2πm
2s+1 withm = 0, 1, . . . ,2s, θo is an arbitrary reference

phase. For simplicity, we setθo = 0 throughout the paper. The phase states|θm〉 are defined
by

|θm〉 = 1√
2s + 1

2s∑
n=0

exp(iθmn)|n〉 (2)

which forms an orthonormal completeness Hilbert space with properties

〈θm|θn〉 = δm,n

2s∑
m=0

|θm〉〈θm| = 1 . (3)

Making use of the projection operator of the phase-state space, one can construct the
annihilation and creation operators of the phase quanta as follows:

p̂ =
2s∑
m=1

√
θm|θm−1〉〈θm| p̂† =

2s∑
m=1

√
θm|θm〉〈θm−1| (4)

which act on the(2s + 1)-dimensional phase-state space
∑′

2s+1 in the following form:

p̂|θm〉 =
√
θm|θm−1〉 p̂|0〉p = 0 (5)

p̂†|θm〉 =
√
θm+1|θm+1〉 p̂†|θ2s〉 = 0 (6)

where the phase vacuum is defined as|0〉p ≡ |θo = 0〉 which has the number-state
representation

|0〉p = 1

2s + 1

2s∑
n=0

|n〉 . (7)

The PB Hermitian phase operator is then factorized as

8̂θ = p̂†p̂ . (8)

These operatorŝp, p̂† and8̂θ satisfy the following commutation relations:

[p̂, p̂†] = 2π

2s + 1
− 2π |θ2s〉〈θ2s | (9)

[8̂θ , p̂] = −p̂ [8̂θ , p̂
†] = p̂† . (10)

Like even and odd coherent states in a finite-dimensional number-state [14], we introduce
even and odd phase coherent states in the phase-state space

∑′
2s+1 in the following form:

|Z〉e ≡ Ne(Z) cosh(Zp̂+)|0〉p = Ne(Z)

s∑
n=0

Z̃2n

√
(2n)!

|θ2n〉 (11)



Hermitian phase operator theory 897

|Z〉o ≡ No(Z) sinh(Zp̂+)|0〉p = No(Z)

s−1∑
n=0

Z̃2n+1

√
(2n+ 1)!

|θ2n+1〉 (12)

where we have used (6),Z is an arbitrary complex number and̃Z =
√

2π
2s+1Z.

The normalization constantsNe(Z) andNo(Z) can be obtained from the normalization
conditions:

e〈Z|Z〉e = 1 o〈Z|Z〉o = 1 (13)

which leads to

Ne(Z) = cosh−1/2
s (|Z̃|2) No(Z) = sinh−1/2

s (|Z̃|2) (14)

where we have used the following polynomial functions:

sinhs x ≡
s−1∑
n=0

x2n+1

(2n+ 1)!
coshs x ≡

s∑
n=0

x2n

(2n)!
. (15)

Taking into account (2), we can obtain the number-state representations of the even and
odd phase coherent states as follows:

|Z〉e = Ne(Z)√
2s + 1

s∑
m=0

2s∑
n=0

Z̃2m

√
(2m)!

exp(iθ2mn)|n〉 (16)

|Z〉o = No(Z)√
2s + 1

s−1∑
m=0

2s∑
n=0

Z̃2m+1

√
(2m+ 1)!

exp(iθ2m+1n)|n〉 . (17)

It is straightforward to show that the even (or odd) phase coherent states cannot form
separately a complete set. However, the even phase coherent states together with the odd
ones build an overcomplete Hilbert space. Their completeness relation takes this form:∫

d2Z[σe(Z)|Z〉ee〈Z| + σo(Z)|Z〉oo〈Z|] =
2s∑
m=0

|θm〉〈θm| = 1 (18)

where d2Z = |Z||d|Z| dφ with Z = |Z|eiφ , the two weight functions are given by

σe(Z) = 1

π
coshs

(
2π

2s + 1
|Z|2

)
σo(Z) = 1

π
sinhs

(
2π

2s + 1
|Z|2

)
. (19)

These even and odd phase coherent states have the following orthogonal relations:

e〈Z|Z′〉e = Ne(Z)Ne(Z
′) coshs(Z̃

∗Z̃′) (20)

o〈Z|Z′〉o = No(Z)No(Z
′) sinhs(Z̃

∗Z̃′) (21)

o〈Z|Z′〉e = 0 (22)

whereZ̃∗ is the complex conjugation of̃Z.
From (16) and (17), we obtain the probability distributions of the even and odd phase

coherent states in the phase-state space,

P(θm‖Z〉e ≡ |〈θm|Z〉e|2 = 1

(2m)!

(
2π |Z|2
2s + 1

)2m

cosh−1
s

(
2π |Z|2
2s + 1

)
(23)

P(θm‖Z〉o ≡ |〈θm|Z〉o|2 = 1

(2m+ 1)!

(
2π |Z|2
2s + 1

)2m+1

sinh−1
s

(
2π |Z|2
2s + 1

)
. (24)
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Then, the phase variances associated with the above distributions are given by,
respectively,

〈(18̂θ )
2〉e = 1

2
cosh−2

s

(
2π |Z|2
2s + 1

) s∑
n6=m

(θ2n − θ2m)
2

(2n)!(2m)!

(
2π |Z|2
2s + 1

)2(n+m)
(25)

〈(18̂θ )
2〉o = 1

2
sinh−2

s

(
2π |Z|2
2s + 1

) s∑
n6=m

(θ2n+1 − θ2m+1)
2

(2n+ 1)!(2m+ 1)!

(
2π |Z|2
2s + 1

)2(n+m)+2

. (26)

One can also obtain the probability distributions of the even and odd phase coherent
states in the number-state representation:

P(n‖Z〉e) ≡ |〈n|Z〉e|2

= 1

2s + 1

∣∣∣∣ s∑
m=0

√
2π

(2s + 1)(2m)!
Z2m exp

(
i
4πmn

2s + 1

)∣∣∣∣2

cosh−1
s

(
2π |Z|2
2s + 1

)
(27)

P(n‖Z〉o) ≡ |〈n|Z〉o|2

= 1

2s + 1

∣∣∣∣ s−1∑
m=0

√
2π

(2s + 1)(2m+ 1)!
Z2m+1 exp

(
i
2π(2m+ 1)n

2s + 1

)∣∣∣∣2

× sinh−1
s

(
2π |Z|2
2s + 1

)
. (28)

On the basis of the completeness relation (18), we can expand a phase state|θm〉 in
terms of the even and odd phase coherent states as

|θm〉 = 1

π
√
m!

∫
d2Z

[
cosh1/2s

(
2π |Z|2
2s + 1

)
|Z〉e + sinh1/2

s

(
2π |Z|2
2s + 1

)
|Z〉o

]
. (29)

Any state in the phase-state space must possess the following expansion:

|ψ〉 =
2s∑
m=0

Cm|θm〉 (30)

where
∑2s

n=0 |Cm|2 = 1.
In order to expand the arbitrary state in terms of the even and odd phase coherent

states, we must use the completeness relations (18). Substituting (29) into (30), we obtain
the following expansion in the even and odd coherent-state representation:

|ψ〉 = 1

π

2s∑
m=0

Cm√
m!

∫
d2Z

[
cosh1/2s

(
2π |Z|2
2s + 1

)
|Z〉e + sinh1/2

s

(
2π |Z|2
2s + 1

)
|Z〉o

]
. (31)

We can also expand asn quantum state in the finite-dimensional space
∑

2s+1 in the
form:

|n〉 = 1

π
√

2s + 1

∫
d2Z

{ s∑
m=0

1√
(2m)!

exp

(
i
4πmn

2s + 1

)(
2πZ∗

2s + 1

)2m

cosh1/2s

(
2π |Z|2
2s + 1

)
|Z〉e

+
s−1∑
m=0

1√
(2m+ 1)!

exp

[
i
2π(2m+ 1)n

2s + 1

](
2πZ∗

2s + 1

)2m+1

× sinh1/2
s

(
2π |Z|2
2s + 1

)
|Z〉o

}
. (32)
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An arbitrary state in the number-state space
∑

2s+1 must possess this form:

|8〉 =
2s∑
n=0

Dn|n〉 (33)

where
∑2s

n=0 |Dn|2 = 1. From (32) and (33) it is straightforward to get the even and odd
phase coherent-state expansions of|8〉:

|8〉 = 1

π
√

2s + 1

2s∑
n=0

∫
d2Z

{ s∑
m=0

1√
(2m)!

exp

(
i
4πmn

2s + 1

)(
2πZ∗

2s + 1

)2m

× cosh1/2s

(
2π |Z|2
2s + 1

)
|Z〉e +

s−1∑
m=0

1√
(2m+ 1)!

exp

[
i
2π(2m+ 1)

2s + 1

]

×
(

2πZ∗

2s + 1

)2m+1

sinh1/2
s

(
2π |Z|2
2s + 1

)
|Z〉o

}
. (34)

It is easy to prove that there is the following relation between the even and odd phase
coherent states and the phase coherent states [15]:

|Z〉 =
√

2

2

{[
1 + exp2s

(
2π |Z|2
2s + 1

)]1/2

|Z〉e +
[

1 − exp2s

(
−2π |Z|2

2s + 1

)]1/2

|Z〉o
}

(35)

where exp2s x ≡ ∑2s
n=0 x

n/n! and the phase coherent state is defined by

|Z〉 = exp
− 1

2
2s

(
2π |Z|2
2s + 1

) 2s∑
n=0

1√
n!

(√
2π

2s + 1
Z

)n
|θn〉 . (36)

Using the completeness relation of the even and odd coherent state, through a tedious
calculation, we arrive at the even and odd coherent-state representation of the Hermitian
phase operator with the following result:

8̂θ =
∫

d2Zg(Z)[f 2
e (Z)|Z〉ee〈Z| + f 2

o (Z)|Z〉oo〈Z|
+fe(Z)fo(Z)|Z〉eo〈Z| + fo(Z)fe(Z)|Z〉oe〈Z|] (37)

where

fe(Z) =
√

2

2

[
1 + exp2s

(
2π |Z|2
2s + 1

)]1/2

fo(Z) =
√

2

2

[
1 − exp2s

(
2π |Z|2
2s + 1

)]1/2

(38)

g(Z) = − 4π

2s + 1

(
1 − 2π |Z|2

2s + 1

)
exp1/2

2s

(
2π |Z|2
2s + 1

)
. (39)

It follows from (37) that

8̂θ |Z〉e =
∫

d2Z′8e(Z,Z
′)|Z′〉e (40)

8̂θ |Z〉o =
∫

d2Z′8o(Z,Z
′)|Z′〉o (41)

where

8e(Z,Z
′) = Ne(Z)Ne(Z

′)g(Z′)fe(Z′)[fe(Z′)+ fo(Z
′)] coshs

(
2πZZ′∗

2s + 1

)
(42)

8o(Z,Z
′) = No(Z)No(Z

′)g(Z′)fo(Z′)[fe(Z′)+ fo(Z
′)] sinhs

(
2πZZ′∗

2s + 1

)
. (43)
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We can also obtain the even and odd coherent-state representation of the exponential
phase operator,

exp(±i8̂θ ) =
∫

d2Zh±(Z)[f 2
e (Z)|〉ee〈Z| + f 2

o (Z)|Z〉oo〈Z|
+fe(Z)fo(Z)|Z〉eo〈Z| + fe(Z)fo(Z)|Z〉oe〈Z|] (44)

where

h±(Z) = 2

2s + 1
exp

(
∓i

2π

2s + 1

)
exp2s

(
2π |Z|2
2s + 1

)
exp

[
− 2π |Z|2

2s + 1
exp

(
∓i

2π

2s + 1

)]
.

(45)

Obviously, like the phase-state representation and the phase coherent-state representation
[15] of the Hermitian phase operator, the even and odd phase coherent-state representation
can also be used to study phase properties of the single-mode field.

Finally, we turn to discuss the number–phase uncertainty relation for the even and odd
phase coherent states. The phase variances in these states have been given by (25) and (26).
Through a tedious calculation, we get the number variances in these states:

〈(1N̂)2〉e = s(s + 1)

3
+ cosh−1

s (|Z̃|2)
s∑

n>m

|Z|2(n+m)√
(2n)!(2m)!

cos(1nm/2 − αnm)

sin2(1nm/2)

− cosh−1
s (|Z̃|2)

[ s∑
n>m

|Z̃|2(n+m)√
(2n)!(2m)!

sin(1nm/2 − αnm)

sin(1nm/2)

]2

(46)

〈(1N̂)2〉o = s(s + 1)

3
+ sinh−1

s (|Z̃|2)
s−1∑
n>m

|Z|2(n+m+1)

√
(2n+ 1)!(2m+ 1)!

cos(1nm/2 − αnm)

sin2(1nm/2)

− sinh−1
s (|Z̃|2)

[ s−1∑
n>m

|Z̃|2(n+m+1)

√
(2n+ 1)!(2m+ 1)!

sin(1nm/2 − αnm)

sin(1nm/2)

]2

(47)

where1nm = θ2n − θ2m andαnm = 2(n−m)φ. In the derivation of the above expressions
we have used the following identities:

eiα

1 − ei1
+ e−iα

1 − e−i1
= sin(1/2 − α)

sin1/2
(48)

cosα

sin21/2
− sin(1/2 − α)

sin1/2
= cos1/2 cos(1/2 − α)

sin21z/2
. (49)

The expectation values of the commutator [8̂θ , N̂ ] for the even and odd phase coherent
states are given by

〈[8̂θ , N̂ ]〉e = i cosh−1
s (|Z̃|2)

s∑
n>m

|Z̃|2(n+m)1nm√
(2n)!(2m)!

cos(1nm/2 − αnm)

sin(1nm/2)
(50)

〈[8̂θ , N̂ ]〉o = i sinh−1
s (|Z̃|2)

s−1∑
n>m

|Z̃|2(n+m+1)1nm√
(2n+ 1)!(2m+ 1)!

cos(1nm/2 − αnm)

sin(1nm/2)
(51)

where we have used the following formula:

2s∑
k=0

keik1nm = − 2s + 1

1 − ei1nm
n 6= m . (52)
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From (25), (26), (46), (47), (50) and (51) we find that

〈(18̂θ )
2〉e〈(1N̂)2〉e 6= 1

4|〈[8̂θ , N̂ ]〉e|2 (53)

〈(18̂θ )
2〉o〈(1N̂)2〉o 6= 1

4|〈[8̂θ , N̂ ]〉o|2 (54)

which indicate that the even and odd phase coherent states are not the minimum uncertainty
states and intelligent states for the number and phase operators.

In conclusion, we have constructed the even and odd phase coherent states associated
with the PB Hermitian phase theory and discussed some properties of these states. We have
shown that the Hermitian phase operator can be expressed in terms of the projection operator
in the even and odd phase coherent-state space which can be used to investigate phase
properties of the electromagnetic field. We have also studied the number–phase uncertainty
relation for the even and odd phase coherent states. It is interesting to further investigate
non-classical behaviours of these quantum states and their applications to quantum phase
measurements. This will be discussed elsewhere.
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